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Upper MM-Wave Slow Wave Sources 
State-of-the-Art
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Magnetic Focusing and Transport of 
Electron Beams – a Key Limiting Factor
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• J in A/cm2

• Vb in kV

• Beam envelope equation:
From S. Humphries, “Charged Particle Beams”
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Power vs. Frequency ( f ) Scaling for Round 
Beam Devices – Basic Issues

Fixed Upper Limit on Circuit Magnetic Field Bmax
due to Permanent Magnet Technology (~ 11 kG)

Practical Upper Limit on Beam Voltage Due to 
Systems Limitations (~ 20 kV)

Fixed Upper Limit on Current Density 
in the Circuit Jmax (~1200 A/cm2)

Low Frequency
High 

Frequency
Beam cross 

section

Circuit Radius ~ 1/f

Beam Radius ~ 1/f

Beam Area ~ 1/f 2

Beam Current ( Ib ) ~ Jmax(1/f 2)

Beam Power ( Pb ) ~ Vb Ib ~ Vc Jmax (1/f 2)

Output Power ~ ηPb ~ (1/f 0.5) (1/f 2) ~ (1/f 5/2)

Circuit breakdown limited (beam voltage Vb scaling as 1/f )
Beam Power ( Pb ) ~ Vb Ib ~ Jmax (1/f 3)

Output Power ~ ηPb ~ (1/f 0.5) (1/f 3) ~ (1/f 7/2)

Several Possible Scalings.  For Example…..

Circuit not breakdown limited (fixed beam voltage Vb)

Interaction impedance limited

Output Power ~ ηRI b
2 ~ (1/f 0.5) (1/f 4) ~ (1/f 9/2)



Scaling formulae for traveling wave devices 
and standing wave devices

Device
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Numeric values from state-of-the art anchor points, f in GHz, Vb in kV, and J in 
A/cm2. N is the beam aspect ratio or number of beams.

Traveling wave Standing wave
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Scaling at 220 GHz
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More Scaling at 220 GHz
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Projected 220 GHz Performance
at V = 16 kV
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Curves for Various CW Output Powers
( 220 GHz, Vb = 16 kV ) 

TW
Curves for Various CW Output Powers

( 220 GHz, Vb = 16 kV ) 
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Current density ~ 750 A/cm2

Beam aspect ratio ~ 10-25 50 W Output Power at 
220 GHz



Projected 220 GHz Performance
at V = 20 kV
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Electronic Efficiency

Multi-stage depressed collector
State-of-the-art efficiency > 80%.

Multi-stage Depressed-Collector 
Technology for Efficiency Enhancement
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Component Design

• MICHELLE 3D and Maxwell 3D addressing the beam generation, 
propagation and collection

Cathode                            Anode                        PCM magnetic field                                  Multi-stage depressed collector

Beam formation Beam transport Beam energy recovery



– Periodic Cusp Magnet (PCM) fields
• Very common focusing scheme for conventional tubes
• Challenges

– Obtaining sufficient field
– Transverse plane focusing
– Small parts
– Magnetization homogeneity

• Advantages
– Stable transport for long distances

– Permanent Magnet (PM) axial (solenoidal) fields
• Used in some compact MMW tubes
• Challenges

– Diocotron instability
• Advantages

B [kG] > 0.32

– Higher fields obtainable 
– Simple magnetic geometry

Focusing Options with Permanent Magnets
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Sheet-Beam Transport in 
Solenoidal Field

Beam slices at 
various positions

MICHELLE Simulation ExB Drift
Diocotron Instability



Beam Compression Requirements

Cathode
Jcath = 10 A/cm2

Round Beam – Compression is 
Two Dimensional

If radius is reduced by a factor of 10

Circuit
J = 1000 A/cm2

Cathode
Jcath = 50-100 A/cm2

Circuit
J = 1000 A/cm2

Sheet Beam – Compression is 
Mainly One Dimensional

If height is reduced by a factor of 10-20

Need High Current 
Density Cathodes!!
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High Power Amplifier Design



High Power Amplifier Design

• Perform theoretical analyses and simulations using physics-based modeling and 
simulation tools, such as MICHELLE, CHRISTINE and TESLA (NRL) and COTS 
software, such as: 

MAXWELL and  HFSS (http://www.ansoft.com/), 
MAGIC (http://www.magictoolsuite.com/), 
ANALYST (http://www.staarinc.com/), 
ANSYS (http://www.ansys.com/)

– Analyze beam-wave interaction in circuit 
> Power > Efficiency  > Bandwidth

– Determine limitations and devise solutions to key problems
> Stability > Breakdown > Thermal 

• Design, fabricate, and cold test most promising structures to determine optimum 
configuration and fabrication techniques



Higher Order Modes in
Sheet Beam Devices

• Sheet beam RF structures are inherently overmoded
– Beam/circuit lateral size becomes large compared to RF wavelength
– Many competing modes appear with similar resonant frequencies

• Need an understanding of mode competition

Mode competition is a universal problem 
for sheet beam RF amplifiers

a

b

Consider a simple waveguide:

TM mode cutoff frequencies are:
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Modes have different transverse structure:



Sources of Mode Competition

• Competing interactions:
– Backward wave oscillation (BWO)
– Stop-band oscillations
– Both TM and TE modes interact
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Physical Processes Affecting Stability

• BWO oscillation occurs when the gain region exceeds a threshold length
• Stop-bands can significantly decrease this critical length

EM structure waves

Backward

Beam space-charge waves

Internal feedback
(leads to BWO)

Forward
End reflectionsCoupling due to 

mismatched structures

Many processes provide feedback, potentially causing oscillation

Forward wave
amplification

Sheet electron beam

Slow-wave structure
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